32 research outputs found

    Quantifying the Benefits of the Expanded Food and Nutrition Education Program (EFNEP) Using Biomarkers for Chronic Disease Risk

    Get PDF
    The Expanded Food and Nutrition Education Program (EFNEP) is among the major nutrition education programs funded by the United States Department of Agriculture (USDA) with the aim of reducing food insecurity among low-income families. The program reaches about 70,000 adults and youth of low-income families in the US, District of Columbia, and six U.S. territories. Prior studies have used self-reported data, which possesses measurement errors, to estimate the benefits of the program. This can lead to underestimation or overestimation of results. To address this limitation, I use clinically measured objective biomarkers, such as body mass index (BMI), blood sugar level (HbA1C) and blood pressure to estimate the benefits of EFNEP and compare it to the program costs. Results show that EFNEP benefits outweigh program costs. However, the use of self-report data underestimates the benefits of the program

    Clinical use of electronic portal imaging to analyse tumor motion variation during a 3D-conformal prostate cancer radiotherapy using online target verification and implanted markers

    Get PDF
    Purpose: To evaluate the daily treatment setup variation and the interfraction and intrafraction prostate motion with portal imaging and implanted fiducial markers during irradiation with a 3D conformal radiotherapy for localized prostate cancer patients.Methods: By remote verification, shifts from isocenteric positioning and inter/intra-fraction prostate motion were investigated for 34 patients treated supine with escalated dose conformal radiotherapy. To limit the effect of inter-fraction prostate motion, patients were planned and treated with an empty rectum and a comfortably full bladder. Daily pre-therapy and treatment electronic portal images were obtained for anterior and lateral treatment fields according to an on-line target localization protocol using three gold markers. From these images, random and systematic set-up errors were measured by matching corresponding patients’ gold markers on reference digitally reconstructed radiographs (DRR). Superior-inferior, anterior-posterior and lateral motions were measured from the displacement of the gold markers implanted into the prostate before planning. A planning target volume (PTV) was derived to account for the measured prostate motion and field placement deviations.Results: Analysis of 1,278 portal images to determine changes in the radiation field during the course of treatment. From the data, random isocenter positioning deviations were 2.66 mm, 2.78 mm and 2.59 mm for vertical, lateral and longitudinal movements respectively. The systematic deviations were 3.15 mm, 3.09 mm and 2.52 mm for vertical, lateral and longitudinal movements respectively. From the verification process, it was realized that 44.7%, 42.8% and 31.4% of the vertical, lateral and longitudinal prostate migrations respectively needed correction/shift.Conclusion: Random set-up errors were small using real-time isocenter placement corrections. Inter-fraction prostate motion remained the largest source of treatment error, and observed motion was greatest at the laterals. In the absence of real-time pre-treatment imaging of the prostate position, using sequential portal films of implanted gold markers, portions of the PTV is missed and surrounding tissues not spared. This research improves quality assurance by confirming the prostate position within the treatment field over the course of therapy.-----------------------------Cite this article as: Acquah GF, Gustavsson M, Doudoo CO, Agbeve RK, Schiestl B. Clinical use of electronic portal imaging to analyze tumor motion variation during a 3D-conformal prostate cancer radiotherapy using online target verification and implanted markers. Int J  Cancer Ther Oncol 2014; 2(4):02044. DOI: 10.14319/ijcto.0204.

    Clinical use of electronic portal imaging to analyse tumor motion variation during a 3D-conformal prostate cancer radiotherapy using online target verification and implanted markers

    Get PDF
    Purpose: To evaluate the daily treatment setup variation and the interfraction and intrafraction prostate motion with portal imaging and implanted fiducial markers during irradiation with a 3D conformal radiotherapy for localized prostate cancer patients.Methods: By remote verification, shifts from isocenteric positioning and inter/intra-fraction prostate motion were investigated for 34 patients treated supine with escalated dose conformal radiotherapy. To limit the effect of inter-fraction prostate motion, patients were planned and treated with an empty rectum and a comfortably full bladder. Daily pre-therapy and treatment electronic portal images were obtained for anterior and lateral treatment fields according to an on-line target localization protocol using three gold markers. From these images, random and systematic set-up errors were measured by matching corresponding patients’ gold markers on reference digitally reconstructed radiographs (DRR). Superior-inferior, anterior-posterior and lateral motions were measured from the displacement of the gold markers implanted into the prostate before planning. A planning target volume (PTV) was derived to account for the measured prostate motion and field placement deviations.Results: Analysis of 1,278 portal images to determine changes in the radiation field during the course of treatment. From the data, random isocenter positioning deviations were 2.66 mm, 2.78 mm and 2.59 mm for vertical, lateral and longitudinal movements respectively. The systematic deviations were 3.15 mm, 3.09 mm and 2.52 mm for vertical, lateral and longitudinal movements respectively. From the verification process, it was realized that 44.7%, 42.8% and 31.4% of the vertical, lateral and longitudinal prostate migrations respectively needed correction/shift.Conclusion: Random set-up errors were small using real-time isocenter placement corrections. Inter-fraction prostate motion remained the largest source of treatment error, and observed motion was greatest at the laterals. In the absence of real-time pre-treatment imaging of the prostate position, using sequential portal films of implanted gold markers, portions of the PTV is missed and surrounding tissues not spared. This research improves quality assurance by confirming the prostate position within the treatment field over the course of therapy.-----------------------------Cite this article as: Acquah GF, Gustavsson M, Doudoo CO, Agbeve RK, Schiestl B. Clinical use of electronic portal imaging to analyze tumor motion variation during a 3D-conformal prostate cancer radiotherapy using online target verification and implanted markers. Int J  Cancer Ther Oncol 2014; 2(4):02044. DOI: 10.14319/ijcto.0204.4</p

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Clinical use of electronic portal imaging to analyse tumor motion variation during a 3D-conformal prostate cancer radiotherapy using online target verification and implanted markers

    Get PDF
    <p><strong>Purpose: </strong>To evaluate the daily treatment setup variation and the interfraction and intrafraction prostate motion with portal imaging and implanted fiducial markers during irradiation with a 3D conformal radiotherapy for localized prostate cancer patients.</p><p><strong>Methods</strong>: By remote verification, shifts from isocenteric positioning and inter/intra-fraction prostate motion were investigated for 34 patients treated supine with escalated dose conformal radiotherapy. To limit the effect of inter-fraction prostate motion, patients were planned and treated with an empty rectum and a comfortably full bladder. Daily pre-therapy and treatment electronic portal images were obtained for anterior and lateral treatment fields according to an on-line target localization protocol using three gold markers. From these images, random and systematic set-up errors were measured by matching corresponding patients’ gold markers on reference digitally reconstructed radiographs (DRR). Superior-inferior, anterior-posterior and lateral motions were measured from the displacement of the gold markers implanted into the prostate before planning. A planning target volume (PTV) was derived to account for the measured prostate motion and field placement deviations.</p><p><strong>Results: </strong>Analysis of 1,278 portal images to determine changes in the radiation field during the course of treatment. From the data, random isocenter positioning deviations were 2.66 mm, 2.78 mm and 2.59 mm for vertical, lateral and longitudinal movements respectively. The systematic deviations were 3.15 mm, 3.09 mm and 2.52 mm for vertical, lateral and longitudinal movements respectively. From the verification process, it was realized that 44.7%, 42.8% and 31.4% of the vertical, lateral and longitudinal prostate migrations respectively needed correction/shift.</p><p><strong>Conclusion</strong>: Random set-up errors were small using real-time isocenter placement corrections. Inter-fraction prostate motion remained the largest source of treatment error, and observed motion was greatest at the laterals. In the absence of real-time pre-treatment imaging of the prostate position, using sequential portal films of implanted gold markers, portions of the PTV is missed and surrounding tissues not spared. This research improves quality assurance by confirming the prostate position within the treatment field over the course of therapy.</p><p>-----------------------------</p><p><strong>Cite this article as</strong>: Acquah GF, Gustavsson M, Doudoo CO, Agbeve RK, Schiestl B. Clinical use of electronic portal imaging to analyze tumor motion variation during a 3D-conformal prostate cancer radiotherapy using online target verification and implanted markers. <em>Int J  Cancer Ther Oncol</em> 2014; <strong>2</strong>(4):02044. <strong>DOI</strong>: <a href="http://dx.doi.org/10.14319/ijcto.0204.4" target="_blank"><strong>10.14319/ijcto.0204.4</strong></a></p
    corecore